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Abstract

XeroLiquid Protocol is a next-generation AMM protocol that introduces a number of innova- tive

design features that greatly increase the possible use cases for this technology class. The key new

feature introduced is that of asymmetric liquidity, where any given bonding curve only trades in a single

direction, effectively being an out of the money limit order. Two curves can then be linked together into

more advanced trading and market-making strategies. Combined with a sophisticated routing and

arbitrage design, XeroLiquid Protocol expands the design space for trading and market making on-

chain. This whitepaper describes XeroLiquid Protocol’s key features in detail.

© Copyright XeroLiquidFoundation 2024.
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1 Introduction: XeroLiquid Protocol and the evolution of
AMMs

Automated Market Makers – short “AMMs” – are key components of Decentralized Finance (“DeFi”)

infrastructure. AMMs allow market participants to trade their assets whenever they want, without the

need to find another willing counterparty in the market, and without having to resort to centralized

infrastructure.

Bancor and all other early AMMs used the constant product technology. This technology is extremely

elegant because it has no view on where the exchange rate of the two assets it trades should be – it

works equally well everywhere. This advantage is also its greatest disadvantage, because in reality,

constant-product AMMs work equally badly everywhere. The reason for this is that most of the time,

any two assets in the market trade in well-known ranges. There may be periods of heightened volatility,

but for reasonable time frames the maximum price changes of 10x, or possibly 100x are a far cry away

from the complete scale invariance exhibited by constant-product AMMs which are designed to work

equally well on ranges of the 1000x, 10000x or more. In other words, a lot of the collateral in constant-

product AMMs is supporting trading at price points that will not be reached under any reasonable

assumptions. This collateral is therefore employed extremely inefficiently and should be removed from

the AMM.

1.1 Concentrated liquidity

The area where this problem was most pertinent was for like-kind assets, ie assets that are expected

to trade at a constant (typically unity) price point. The best-known example for such like-kind assets are

two stable coins that refer to the same underlying asset, for example USDC and USDT. Those are

expected to trade in a very narrow range around unity, and any collateral that sits meaningfully away

from unity will never be used. Also, if ever it is used this is probably a meltdown of one of the coins, and

the AMM would have been better off halting the trading in this case to limit its losses. The desire to

trade like-kind assets efficiently on AMMs led to the design of the so-called stableswap invariant curves,

where the large majority of the liquidity is deployed around unity. The purest example here is the
constant-sum (or slightly more general, constant-price) curve where the entire liquidity is located at one

specific price. The AMM then simply stops trading at either side of this price. In practice, stable-swap

curves do accommodate a certain price range – a few percent – with the large majority of their liquidity,

and they often also allocate a very small amount of liquidity to the wings so that they can continue

trading (and continue to be useful for price discovery) without wasting much collateral.

Concentrated liquidity experienced a step-change with the introduction of Uniswap v3 in 2021: whilst

stable-swap curves are designed to operate around a specific price point, the new model offers a

multitude of concentrated trading curves, each associated with a specific trading interval, the entirety of

which segments the price axis into non-overlapping and fully exhaustive segments. A liquidity provider

https://curve.fi/files/stableswap-paper.pdf
https://curve.fi/files/stableswap-paper.pdf
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effectively invests in one, or multiple, of those stable swap curves. This however is a difficult choice,
because only the segment corresponding to the current price point earns fees, so all collateral on the

other segment is wasted. Also, liquidity cannot simply be moved: it must be withdrawn and restaked,

which can be a cumbersome and gas-intensive process.

1.2 Concentrated liquidity as trading facilitation

One interesting thing that started happening on Uniswap v3 was that people deliberately placed

collateral far away from the money – not necessarily for liquidity provision, but rather with the intent of

buying assets on a dip, or selling them after a rally. The traditional paradigm of AMMs was that liquidity

providers were there to earn fees on their collateral, and that those fees are sufficient to not only cover

for the so-called Impermanent Loss (“IL”), but also deliver attractive risk-adjusted returns over and

beyond covering IL. We have shown previously that apparently this is not the case, and that the large

majority of liquidity providers do not even break even once IL has been taken into account (see

LHRW2021).

This traditional paradigm of AMMs is partially replaced by a trading paradigm, where “liquidity
providers” no longer provide liquidity but instead use an AMM to submit limit orders to the
market. However, using a traditional concentrated liquidity AMM for conditional trading
runs into a number of issues. The first of those we alreadyhave alluded to above: when
views change and positions are to be moved, that can be cumbersome and expensive,
because a hefty cost is incurred every time a change is made rather than only when trading
happens. More important however is the second issue: traditional AMMs provide symmetric
liquidity, meaning one curve governs trading in both directions. So a liquidity provider may
have placed an order to buy ETH on the downside, and may even have spent a lot on gas
moving it around when expectations changed. Then the order is finally executed – but before
the user, who may not be able to monitor it 24/7, has canceled it, markets may have moved
back, and the position has traded back.

1.3 XeroLiquid Protocol: asymmetric, parametrically adjustable, and co

ncentrated liquidity
XeroLiquid Protocol is a DEX designed with traders in mind, and its most important features are based

on asymmetric, parametrically adjustable, and concentrated liquidity. We take those terms one by

one. Concentrated liquidity has already been discussed above, and XeroLiquid Protocol is not different

from other AMMs, except that it can be used to create a wide range of bonding curves, from constant-

product to constant price, and everything in between. This is not fundamentally new, but it is covering

the whole gamut of what is currently available in this space. Parametrically adjustable liquidity relates to

what has been discussed above: rather than putting liquidity at a fixed place and having to redeem and

re-stake it whenever change is desired, a XeroLiquid Protocol “order” (our term for an individual user’s

https://arxiv.org/abs/2111.09192
https://arxiv.org/abs/2111.09192
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liquidity position) is parameterized with an efficient set of parameters, and can be moved around quickly
and cheaply simply by issuing transactions that update parameters.

The most important innovation in XeroLiquid Protocol, however, is the asymmetric liquidity paradigm:

contrary to all other AMMs on the market, XeroLiquid Protocol’s underlying curves trade in a single

direction: one curve – or “order” – is either used for buying or for selling, but never for both. This is a

very important point that we want to drive home: XeroLiquid Protocol can essentially do everything

other major AMMs can do, notably effectively symmetric liquidity provision either across the whole

curve, or within a range of any size, or even concentrated in a single point. But the main strengths of

XeroLiquid Protocol lie elsewhere, because it is fundamentally designed to support trading and market-

making strategies composed of independent and irreversible buy and sell patterns.

XeroLiquid Protocol offers two new primitives, and a number of others that are still under research.

The first and most fundamental primitive is that of an order that consists of a single parametrically

adjustable, concentrated, and asymmetric curve. Examples of orders are “buy ETH for USDC in the

range between 1500 (start) and 1000 (end)” or “sell ETH for USDC at 2000”. The second primitive is that

of a strategy, which consists of multiple, currently at most two, orders that can be linked together via

their collateral. An example of a strategy would be the combination of the two orders above, leading to

“buy ETH for USDC between 1500-1000, and sell it at 2000; repeat until canceled”.

1.4 Outline of this paper

In the remainder of this paper we will go through XeroLiquid Protocol’s feature set in more detail. We

will start with XeroLiquid Protocol’s parametric liquidity, defining the set of hyperbolic curves we are

using. We then discuss our main innovation, asymmetric liquidity, how we implement it in the case of a

strategy composed of two linked curves, and some of its interesting properties, eg MEV resistance.

Finally, we discuss how to adjust curves in a manner that does not require closing and recreating a

liquidity position, thereby reducing the cost of active management.

Before we conclude we also briefly touch on an important issue that arises in the context of

XeroLiquid Protocol, which is how to optimally match trades to orders (what we refer to as matching

and routing ), and how to implement arbitrage strategies either within XeroLiquid Protocol, or between

XeroLiquid Protocol and other systems. Those topics, however, are important enough to warrant their

own publication and will be discussed in more detail in forthcoming publications.

2 Parametric concentrated liquidity

In this section, we discuss XeroLiquid Protocol’s first big innovation parametric concentrated liquidity

based on a set of recently and purposefully engineered invariant curves.

2.1 Pool invariant

curve Our generic pool invariant
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curve is (desmos)

(2.1)

Before we go further, we need to define the variables. As usual, x, y describe the state of the pool, with

x to be interpreted as the amount of risk asset, and y as the numeraire. The variables P0, x0 and Γ are

parameters whose meaning we will discuss further below.

The equation is of the form y = f (x), and it is not immediately obvious that it is symmetric vis-a-vis

exchanging the risk asset and the numeraire. We assert that it is, and we are here giving the reverse

invariant function which reads as follows

(2.2)

Note that we used y0 instead of x0, reflecting our change of numeraire. We did not change

P0 however. Had we used the inverse price P¯0 = 1/P0 instead, then the functional form would have

exactly been the same. In other words, all the equations we show in this document hold when we

replace x, x0, ∆x with y, y0, ∆y, respectively, and we replace P0 with P¯0 = 1/P0.

https://www.desmos.com/calculator/ddypuxl0z8
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Figure 1: The new invariant curve

Also, because we will use it below, and because it is a very elegant form of describing the invariant

curve, we want to introduce here another variant of that curve that is parameterized with the x and y

intercepts xint, yint and the parameter Q = (1 − Γ)2. Please see the appendix for a more thorough

discussion and other relevant formulas.

Q =
(x − x

xy
int) (y −
y

int)
(2.3)
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2.1.1 Geometry of the invariant curve

Whilst it is not immediately obvious when looking at the new invariant curve (the red curve in the figure

“The new invariant curve”), its construction process has been very geometric. Fundamentally, it is still

the same x · y = k hyperbola first introduced by Bancor and ultimately popularized by Uniswap. However,

it has been translated in the x, y plane and has also been scaled. This yields 3 free parameters, 2 for the

translation and 1 for the scale.

We have plotted the invariant curve in the chart “The new invariant curve”, and we have also prepared

an interactive version on Desmos that we invite the reader to play with. In the chart, the red curve is the

curve for a specific value of Γ (about 0.5 in this case). The blue curve is the constant product curve, and

the straight blue line is the constant price curve. The point where they all meet (also indicated by the

green lines) is x0, y0, and the slope (aka price) at this point is P0. The red curve is stretched around the

fixed point x0, y0, keeping the slope fixed, and it no longer has the axis’ as asymptotes, but the dashed

purple lines instead. If we change the Γ value on Desmos, we can see how the curve starts from being

identical to the constant-product curve at Γ = 1 to being identical to the constant price curve at Γ = 0.

(desmos)

We have just seen that the new curve covers the constant product and constant-price cases,

depending on the parameter Γ, and we want to discuss this in more detail here.

2.1.2 Constant-price (Γ = 0)

First, we set Γ = 0. In this case, the pool invariant curve simplifies dramatically to

y = P0 (−x + 2x0) (2.4)

We see that this invariant function is of the constant-price form x + Py = k. This also shows that the

parameter P0 can indeed be interpreted as a price, at least for Γ = 0 where it is the constant price of the

AMM. We also note that the expression x + Py is the total value of the liquidity pool, expressed in units

of the risk asset. This allows us to interpret the term x0 as the invariant size parameter of the pool

(expressed in terms of the numeraire), because for y = 0 we find x = 2x0. In other words – x0 is half the

invariant pool size, expressed in terms of the numeraire.

2.1.3 Constant-product (Γ = 1)

https://www.desmos.com/calculator/5gncl4be5m
https://www.desmos.com/calculator/5gncl4be5m
https://www.desmos.com/calculator/5gncl4be5m


9

0

We now set Γ = 1. Again, the equation simplifies dramatically, and we obtain

P0x
2

y =
x

(2.5)
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0

0

0

∆
x

This is the constant product invariant xy = k where k = P0x2. If we remember the parameter y0 we

previously introduced, then we can rewrite this as k = x0 y0. So, for Γ = 1, the parameters x0, y0 are the

respective pool holdings of the risk asset and the numeraire, at an arbitrarily chosen reference point, and

P0 is the price at this point. So, again, P0 is a price-related parameter, and x0, y0 and √x0y0 are all

possible pool-size- related parameters.

2.2 Swap and price equations

From the pool invariant curve, we obtain the swap equation, ie the equation that de- scribes what

happens if we want to swap a quantity ∆x of the risk asset into a quantity

∆y of the numeraire, or vice versa. In other words, ∆y is obtained as the difference of the right-hand

side of the invariant curve when evaluated at x and x + ∆x, respectively.

What we get in this case is the following equation

−∆y = P0∆xx2

(Γ (x − x0) + x0) (Γ (∆x + x − x0)
+ x0)

(2.6)

or, equivalently, after slight refactoring

−∆y = P0∆xx2

(Γx − x0 (Γ − 1)) (Γ (∆x + x) − x0 (Γ
− 1))

(2.7)

Note the minus sign on the left-hand side, which indicates that when the AMM receives the numeraire,

it returns the risk asset and vice versa. Therefore ∆x and ∆y always have the opposite sign.

The above equation can look somewhat daunting, but it is important to understand that, seen as a

function f : ∆x → ∆y/∆x, the structure is simple. Its general form is

∆y a
− = (2.8)

1 +
b∆x
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which importantly only depends on two parameters, a and b. This suggests that our curve space is

somewhat over-parameterized, and that there are many different ways of achieving equivalent swap

curves. This of course is not new: invariant curves generally contain too much information. For example,

√k = √xy is equivalent to k = xy and so is almost any f (k) = f (xy) for that matter.

Also, for the eagle-eyed, we need to point out that the (a, b) parametrization above breaks down for Γ =

1 in which case we could use a∆x/b + ∆x. This in turn breaks down for Γ = 0. This is the well-known

problem of parameterizing a mathematical manifold – we may need more than one map. We could

introduce 3 variables, but this would obfuscate the fact that the function space is of dimension 2.

We now look again at what happens for the special values of Γ, and we first look at Γ = 0:

−∆y = P0∆x (2.9)

This is a constant-price swap equation where the exchange between risk asset and nu- meraire always

happens at a price P0. When we look at Γ = 1 we find the well-known swap equation for the constant-

product case:

−∆y = P0∆xx2
x (∆x +
x)

(2.10)
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2.3 Leverage in XeroLiquid Protocol

2.3.1 Methods of generating leverage in AMMs

The main purpose of XeroLiquid Protocol’s concentrated parametric liquidity is just that concentration,

aka leverage. Before we go into details on how XeroLiquid Protocol creates concentrated liquidity, we

remind ourselves how AMMs usually do that. In fact, there are two funda- mental models:

1. Along the lines of Bancor v2 (but not v2.1) and Uniswap v3, by running the AMM

on a virtual token supply, thereby creating bona fide leverage

2. Along the lines of Curve and others, by modifying the actual invariant curve

XeroLiquid Protocol effectively uses a mix of both, so we will discuss the two methods in turn. Start-

ing with the first option, what is a “virtual token supply”? We assume a standard constant product AMM

with 100m in liquidity. We then remove some tokens, but with- out telling the AMM about it, so it still

trades as if it had 100m liquidity – up to the point it runs out, at which point it stops trading in the

direction in which it can no longer trade.

To put it more formally, under the virtual tokens paradigm, the parameters x, y that are used in the

invariant curve do not correspond to the actual token holdings xact, yact. Typically, we have xact < x,

yact < y because otherwise there are a number of “dead” tokens the AMM can never reach in other

words, the AMM is delevered. We remind ourselves that x is the risk asset, so xact < x means the AMM

runs into a hard stop when it is trying to sell the risk asset. Therefore, the number xact determines the

upper boundary of the AMM’s trading interval. Likewise, yact < y corresponds to the numeraire and

therefore to purchases of the risk asset, so yact determines the lower boundary of the interval. Upper

and lower are to be understood in the numeraire where the asset being traded is considered the risk

asset of the pair.

Changing the curve is, well, changing the curve. In this context we remind ourselves that

• the slope of the curve (tangent) corresponds to the marginal price at this particular

point of the curve

• a connection between two points on the curve (secant) corresponds to a trade, with

∆x being the amount of risk asset traded, ∆y the amount of numeraire traded,

and ∆y/∆x being the effective price

• the amount of liquidity in a certain segment of a curve is determined by its curva-

ture, with flatter curves corresponding to more liquidity held in that price range.



13

The latter points merit more explanation because they may not be entirely intuitive. We consider an

interval on the x axis, and the corresponding curve segment. The length of the interval on the x-axis is

the amount of risk asset “contained” in this interval. The slope of the curve at every point is the marginal

price, so if the curve is a straight line the entire liquidity is located at the same price point (the so called

“constant price” curve). The more the slope on the left-hand side of the interval is bigger than the slope

on the right-hand side (it can never be smaller as the curve is convex), the wider the price range covered

by the same amount of risk asset liquidity.

XeroLiquid Protocol does something in between those two models: it changes the curve, but in its

current incarnation the curve change is equivalent to a virtual token model. The difference is that, whilst

the virtual token model puts (x, y) on a different point of the curve, XeroLiquid Protocol keeps (x, y) tied

to financially meaningful numbers, but moves the curve around and stretches it. This can be seen nicely

in the aforementioned Desmos model.

Financially this does not make a difference yet. We are working on extensions of the model that would

generate entirely different curves. The main difference is technical, which is important on the highly

resource constrained Ethereum chain. Implementation of this curve is extremely gas efficient, and it can

be combined with an efficient routing framework. The parametric form of the curve allows for highly

efficient implementation, and it also unlocks new composability paradigms that are hard to achieve

otherwise.

2.3.2 XeroLiquid Protocol leverage

We now look at how XeroLiquid Protocol leverage works in practice. First, we go back to the claim that

despite the apparent complexity of the formula, it is financially equivalent to the virtual token model. For

this we recall that the swap equation which is the authoritative record of the financial reality of this

system – had effectively a very simple form along the lines of a/(∆x + b), ie the curves only form a space

of dimension 2. One of those dimensions is frozen once we fix the price, so at any given price there is

only one free parameter left for the curve shape, and the set of curves attainable is exactly the same as

the one under virtual token model.

Again, the eagle-eyed will run into one problem the virtual token model cannot create the constant-

price curve. It can get arbitrarily close to it, but it can never attain it. This is the aforementioned well-

known manifold problem it turns out that the “map” spanned by the virtual token model cannot represent

the constant-price model because this is the “point at infinity”. Which is another reason why our curve is

superior by overparameterizing the problem with a redundant parameter set, we manage to cover the

entire space.

Before we discuss XeroLiquid Protocol liquidity in more detail, we need to point out that we are not yet

dealing with the asymmetric liquidity paradigm that XeroLiquid Protocol is also implementing. In this

https://www.desmos.com/calculator/5gncl4be5m
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section we assume a standard, bi-directional curve, and we will discuss the changes that stem from the

unidirectional liquidity provision in the next section.

For this discussion, we are looking at the Q-and-intersect parametrization of the invariant curve that we

recall as

Q =
(x − x

xy
int) (y −
y

int)
(2.12)
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Figure 2: XeroLiquid Protocol invariant curve (Q=0.3)

We have plotted this invariant curve for reference in the chart “XeroLiquid Protocol invariant curve

(Q=0.3)”, but we suggest looking at the interactive version on Desmos.

In the XeroLiquid Protocol environment, the values of x, y correspond to actual token holdings. As

those holdings cannot go negative, the AMM stops trading in one direction when it hits either of the axes.

Therefore, the curve shown in the chart starts at 75 units of the risk asset (x-axis) and 0 numeraire units

on one side, and ends at 50 numeraire units (y-axis) and 0 risk asset units on the other side. The average

transaction price is 50 ' 0.66. It is somewhat hard to read from the chart here, but from the interactive

version on Desmos we find that the slope where it cuts the y-axis Py ' 2.2 and the one at x is Px = 0.2,

so this particular curve covers a wide price range. It turns out that curves that cover reasonable trading

ranges look almost straight to the eye.

As for the original chart, Q = 0.3 is relatively close to the constant-product case Q = 0. As reference we

have also drawn the same curve with Q ' 0.8 on the chart “XeroLiquid Protocol invariant curve (Q=0.8)”

which can also be seen on Desmos. This curve yields a price range of 0.5 − 0.8 approximately, ie a range

width of 1.5x.

We note en-passant that Q = (1 − Γ)2, P0 = PxPy, and Py/Px = 1/Q2, all of which are detailed in the

appendix.

https://www.desmos.com/calculator/s18px8ip2m
https://www.desmos.com/calculator/s18px8ip2m
https://www.desmos.com/calculator/s18px8ip2m
https://www.desmos.com/calculator/2jsqii4wbw
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Figure 3: XeroLiquid Protocol invariant curve (Q=0.8)

2.3.3 Leverage, pool prices, and the asymptotic invariant equation

There are a number of occasions where it is useful to quantify leverage, one key example being when

we want to calculate the effective price of a pool. As will be discussed in more detail in the section on

matching and routing, XeroLiquid Protocol is unusual in that the matching algorithm, ie the algorithm that

finds the best XeroLiquid Protocol orders for a given trade, is non-trivial. In a traditional AMM, if we even

think about an AMM as being separated into per-position pools, all those pools are set at the same price,

by design. Now this price may or may not be the current market price, provided such price meaningfully

exists in the first place, but at least all positions in the AMM agree what their current marginal price is.

For XeroLiquid Protocol this is different. Even when we are only looking at the active orders, ie the

orders where we have the strict inequalities 0 < y < yint and the price is not stuck at the boundary, there

is no guarantee that the marginal prices of all relevant pools are the same. They will be the same if our

standard routing algorithm has been used, and if the last traded was routed through all active pools.

However, there is no guarantee that this is always the case.

So we can easily be, and often will be, in a situation, where the marginal prices of all active pools
diverge somewhat, and we would like to quantify something akin to the average price, as well as the

price divergence. A naive analysis of this problem may suggest to simply use average and standard

deviation, and in principle this is not a bad idea, except that some pools may be very small, and some

very big, so the correct way to calculate the average is to use some pool-size weighted average, for each

trade direction separately. This measure is also incomplete, however, and may often be misleading. At

the very least it should be augmented by the best price available in each direction. Ultimately, the gold

standard measure in this situation is the full order book that determines the price for every possible trade

size.
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Γ

Be that as it may, it is clear that we need a good measure of the pool size. As it turns out, traditional

constant-product pools have an excellent measure for pool size, which is the pool constant k from the

invariant equation k = x ∗ y. In fact, it is well known that the best measure for pool size is √k, because it

is the only measure that has the correct scaling properties, ie the only measure that scales linearly in the

token amounts.

We also know that XeroLiquid Protocol curves are constant-product curves, just moved and, impor-

tantly, scaled. So what we need is that scaling factor. Once we have it, we can use it in our weighted

average above. To calculate the scaling factor, we introduce yet another form of the pool invariant

equation, its asymptotic form

(x − xasym) (y − yasym) = κ (2.13)

It has three parameters, the two asymptotes xasym, yasym and the pool constant κ (refer again to the

chart “The new invariant curve” and to Desmos for a graph showing those asymptotes). The asymptotes

are given as

xasym =
x0

1 − 1 (2.14)

and

https://www.desmos.com/calculator/5gncl4be5m
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Γ

0

0

k

yasym =
P0x0

1 − 1 (2.15)

which are negative numbers. If we substitute those into the above equation, and we also substitute y

with the right hand side of our initial invariant equation, then we find that κ is

P0x2
κ = Γ2

(2.16)

The term on the top is P0x2 = x0y0 = k, ie it is equal to the pool constant k, and

therefore we get

√
κ =

√
k

Γ

(2.17)

In other words, the scaling factor on a XeroLiquid Protocol order is 1/Γ. We remind ourselves that Γ = 1

− √Q and that Q = 1/√w where w = Py/Px > 1 is the percentage width of the

price range, or rather the greater-than-unity ratio of its two end points. So we finally get the scaling

equation we were looking for

√
κ 1

√ = qP (2.18)

We have plotted the equation in log scale on Desmos, and also in the chart “Log leverage versus range

percentage width”. On the x-axis this the percentage width of the range, eg [100, 105] would be at 5. On

the y-axis we have plotted log leverage. For example, at a 50 range width, the leverage is 101 ' 10.

1 −
4

x
P
y

https://www.desmos.com/calculator/6hueztq72d
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Figure 4: Log leverage versus range percentage width

3 Asymmetric liquidity

XeroLiquid Protocol is designed as an AMM for traders and market makers, and in particular as a “limit

order machine”. There has been some discussion lately about using Uniswap v3 as such, by putting

liquidity into a thin out-of-the-money bucket that will be traded when the prices go through the

associated price interval. There are two issues associated with this approach

1. It is only possible to create one type of limit order, the “out-of-the-money”
type, which is to buy the depreciating asset on the downside, or to sell the

appreciating asset on the upside; it is not possible to buy an asset on its

upside or to sell it onits downside.

2. When markets are jittering or range trading, the position may still be

reversed when the markets move the other way; to avoid this, limit order

positions need to be permanently monitored, and canceled immediately

once they have been executed.
XeroLiquid Protocol still has issue (1) – it is something intrinsic to AMMs, and it is not possible to

address it in an AMM framework. So, “buy-low-sell-high” strategies can be implemented with AMMs, but

stop-loss and buy-on-uptick ones cannot.
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XeroLiquid Protocol, however, fully solves issue (2). The way it does it is that every position has two

curves, one for buying and one for selling. Those curves can in principle be the same, but they usually

are not. So, one possible strategy is that if markets are at say 100, there can be a “buy” curve to

accumulate the asset from 80 down to 50. And there can be a sell curve to sell from 150 to 200. Both

curves can be present, but they do not have to be present – a XeroLiquid Protocol position can simply

terminate once executed, so there is only a buy order, or only a sell order.

3.1 XeroLiquid Protocol asymmetric liquidity mechanics (simplified)

In this section we will go through a simplified version of the mechanics of asymmetric liquidity provision

in XeroLiquid Protocol. In the next section, we will then discuss the detailed mechanics.

Here, we will first discuss the mechanics with an example of a one-sided system (sell- curve only) that

can be used as a sophisticated token distribution engine. We will then discuss an example of a generic

“buy-low-sell-high” trading strategy.

3.1.1 Token distribution strategy

Our first example refers to the chart “Token distribution curves”, but as usual we urge the reader to

look at the version on Desmos as it allows for the reader to modulate the parameters.

(desmos)

• DC1 parameters (solid): Q = 0.5, xint = 500k, yint = 500k

• DC1 range (solid): Px = 0.5, Py = 2.0, P0 = 1

• DC2 parameters (dashed): Q = 0.87, xint2 = 500k, yint2 = 870k

• DC2 range (dashed): Px2 = 1.5, Py2 = 2.0, P02 = 1.7

The chart has two curves, DC1 (“Distribution Curve 1”) and DC2. We first look at DC1

https://www.desmos.com/calculator/iedbwhvemb
https://www.desmos.com/calculator/iedbwhvemb
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Figure 5: Token distribution curves (DC1: solid; DC2: dashed)

on its own. This curve contains 500k of risk asset tokens, and it sells them at an average price of 1, for

500k numeraire tokens. The price range is between 0.5 − 2.

The curve DC1 on its own is a valid distribution strategy, but it does only allow for a limited number of

choices – the price range and the amount. Therefore, we introduce a curve DC2 that is in addition to

DC1. In this case, DC2 distributes another 500k tokens, but in a smaller range 1.5 − 2.0, receiving up to

870k in numeraire.

In other words – DC1 and DC2 together implement a distribution strategy in the range

0.5 − 2.0 that distributes a total of 1m tokens, against a total 1.37m of cash. The distri- bution process

is back loaded, as the second half of the tokens is only distributed at 1.5 and above. Please refer to the

workbooks XeroLiquid ProtocolSim-LitepaperExamples.ipynb and XeroLiquid ProtocolSim-

LitepaperExamplesShort.ipynb in our XeroLiquid Protocol Simulator for a simulation of this position using

our open-sourced Python libraries.

3.1.2 Buy-low-sell-high trading strategy

Our second use case refers to the chart called “Buy-low-sell-high curves”, that can also be found on

Desmos.

(desmos)

For reference, the curve parameters are as follows

https://github.com/bancorprotocol/carbon-simulator/blob/main/CarbonSim-LitepaperExamples.ipynb
https://github.com/bancorprotocol/carbon-simulator/blob/main/CarbonSim-LitepaperExamplesShort.ipynb
https://github.com/bancorprotocol/carbon-simulator/blob/main/CarbonSim-LitepaperExamplesShort.ipynb
https://github.com/bancorprotocol/carbon-simulator
https://github.com/bancorprotocol/carbon-simulator/tree/main/carbon
https://www.desmos.com/calculator/rxvvjcpui5
https://www.desmos.com/calculator/rxvvjcpui5
https://www.desmos.com/calculator/rxvvjcpui5
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Figure 6: Buy-low-sell-high curves (buy: blue; sell: red) (blue)

• Buy (blue) parameters: Q = 0.8, xint = 100, yint = 50

• Lower range (buy; blue): Px = 0.4, Py = 0.625, P0 = 0.5

• Sell (red) parameters: Q = 0.8, xintr = 100, yintr = 80

• Upper range (sell; red): Pxr = 0.64, Pyr = 1.0, P0r = 0.8

Here, the blue curve is the lower range, ie the range where the risk asset x is bought (and the numeraire
is sold), and the red curve is the upper range where the risk asset is sold (and the numeraire is bought).

We assume we start outside and above the buy range, and the price of the risk asset is falling. In this

case, buying only starts once the range is entered, and buying stops whenever prices go back up.

Importantly, there is no selling off the blue curve on the way up – it is simply paused. Buying resumes

however whenever the prices go below its previous low water mark.

So, in the chart shown, the risk asset is bought starting at a price of Py = 0.625 y-per-x, and ending at

a price of Px = 0.4 y-per-x. Once buying is finished – ie when the price drops to or below 0.4 – a total of

xint = 100 units of the risk asset will have been bought, against yint = 50 units of cash, ie at an effective

price of P0 = 0.5 y-per-x. As a reminder,



23

P0 = √PxPy is the geometric average of the end prices of the range.

On the way up – the red curve – the situation is mutatis mutandis the same: the risk asset is sold

starting at a price of Pxr = 0.64 y-per-x, and an end price of Pyr = 1.0 y-per-x. Once selling is finished –

ie when the price rises to or above 1.0 – a total of xintr = 100 units of the risk asset will have been sold,

against yintr = 80 units of cash, ie at an effective price of P0 = 0.80 y-per-x.

So, if we started between the ranges with 50 units of the numeraire, and we went all the way down to

below 0.4 and up again to 1 we end up with 80 units of cash, at a profit of 30.

This is a key use case of XeroLiquid Protocol: the “liquidity provider” (we refer to them as “strategy

providers”) can use XeroLiquid Protocol to run a buy-low-sell-high trading strategy. For this strategy to
work, we need the two curves present, and we need xint = xintr and yint < yintr. Also, the curvatures Q,

Qr must be chosen such that Py < Pxr, ie so that the ranges do not intersect for x, y > 0.

Again, please refer to the workbooks XeroLiquid ProtocolSim-LitepaperExamples.ipynb for a longer

discussion, and XeroLiquid ProtocolSim-LitepaperExamplesShort.ipynb for calculations-only, in our

XeroLiquid Protocol Simulator for a simulation of this position using our open-sourced Python libraries.

3.2 Actual XeroLiquid Protocol asymmetric liquidity mechanics

After having described the simplified XeroLiquid Protocol asymmetric liquidity dynamics above, in this

section we discuss the detailed mechanics. Before we do that, however, we go through a brief example

to show what the issue is with the simplified dynamics.

For this discussion, we are again referring to the chart “Buy-low-sell-high curves” that can also be

found on Desmos. We assume we start somewhere between the ranges, eg at a price of 0.63. We are

above the buy range, so as far as the blue curve is concerned, we need to be 100% in the numeraire. We

are also below the sell range, so as far as the red curve is concerned, we need to be 100% in the risk

asset. The only solution that satisfies both conditions is a zero position which is of course not particularly

useful.

What we have just shown is that it is not possible to run both curves on a single shared state (x, y).

Instead, we need two separate states (x−, y−) for the lower range, and (x+, y+) for the upper range.

Note that the effective state space is of dimension 2, not 4, because of the two invariant curves that

need to be satisfied that tie the x to their respective y.

Using XeroLiquid Protocol conventions, the active asset on a curve (the one being sold ) is always on

the y-axis, and the passive asset is on the x-axis. There is a correspondence between differences but

not between the absolute values of the cross-axis. This is best explained with an example. We examine

the chart “Two linked curves”, where the active token on the left-hand side is some asset RSK, and the

active token on the right-hand side is USD (note that the risk asset / numeraire distinction does not make

https://github.com/bancorprotocol/carbon-simulator/blob/main/CarbonSim-LitepaperExamples.ipynb
https://github.com/bancorprotocol/carbon-simulator/blob/main/CarbonSim-LitepaperExamplesShort.ipynb
https://github.com/bancorprotocol/carbon-simulator
https://github.com/bancorprotocol/carbon-simulator/tree/main/carbon
https://github.com/bancorprotocol/carbon-simulator/tree/main/carbon
https://www.desmos.com/calculator/rxvvjcpui5
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sense in XeroLiquid Protocol). In this case we find that

1. The y-axis on the left-hand chart is denominated in RSK and corresponds to

theactual number of tokens on the “RSK” (sell RSK and buy USD) curve

2. The y-axis on the right-hand chart is denominated in USD and corresponds to

the actual number of tokens of the “USD” (sell USD and buy RSK) curve

3. The x-axis on the left-hand chart is denominated in USD; its absolute values do

not matter, but differences are transmitted 1:1 to the right-hand side y-axis (2)

4. The x-axis on the right-hand chart is denominated in RSK; its absolute values

do not matter, but differences are transmitted 1:1 to the left-hand side y-axis (1)

Note that the system only tracks the y-values of the respective charts, as the x-values can be

recovered from the invariant curves.

The LHS (“sell RSK”) chart contains up to 100 units of RSK, and it sells at a range around the average

value of 225 USD per 100 RSK, ie 2.25 USD/RSK. The RSK (“sell

Figure 7: Two linked curves

USD”) chart is much bigger – it contains up to 5,000 units of USD, and it buys RSK at an average price

of 5,000 USD per 14,000 RSK, ie 0.36 USD/RSK. Note that those values are extreme for demonstration

purposes – realistic values are usually somewhat closer together. However, the difference in volume is

realistic: it may simply correspond to a “buy-low-sell-high” curve that has been seeded with USD and

that did not get a chance of buying many RSK yet, so the RSK curve has not fully expanded at this point

(see below for the meaning of “expanded”).

The trade mechanics can be summarized by the following rules

1. Every token is sold on its own curve, where it appears on its y-axis

2. The y-value on a token’s own curve corresponds to actual token holdings; selling
stops at y = 0
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3. Every transaction yields a ∆y < 0 (sell the active asset) and a ∆x > 0 (buy the

passive asset)

4. The ∆x obtained in a transaction is added to the y-axis on the other curve (y¯) in a

1:1 ratio

5. In case the other curve does not have sufficient capacity, ie if y¯ + ∆x > y¯int in the

other axis, then its capacity is increased by setting y¯int := y¯ + ∆x

6. Curves only ever automatically expand, but they never shrink automatically; the

latter has to be done manually, if so desired

To summarize, each of the curves describes the sale – and the sale only – of its active asset (by

convention the one on the y axis), and selling stops when the curve runs out of tokens at y = 0. The

tokens obtained against the sale are moved onto the opposite curve, expanding it if need be. The system

never shrinks a curve, as this could open arbitrage opportunities.

It may be worth going through a brief example with the following parameters: the lower range is [50,

100], with the effective price being its geometric average 70.7. The upper range is [150, 200] with

effective price 173.2. If we start at a price between the ranges, say at 110, with 1, 000 units of cash, and

we go to below 50, then the cash will have been converted into 1000/70.7 ' 14.1 units of the risk asset.

Those risk asset units move onto their own sell curve, and we assume it needed expansion (it may even

have started at zero!) so now we have a curve that is fully loaded with 14.1 units of risk assets. If we

move to 200, then those will be sold at an effective price of 173.2, yielding

14.1 ∗ 173.2 ' 2, 449 units of cash that move to the other curve.

We now have 2, 449 units of cash which would correspond to 2, 449/70.7 ' 34.6 units of the risk asset

if we’d go all the way down again. We assume, however, that we only dip into the lower order, to about

89, and we only get filled 5 units of the risk asset before prices go up again. The capacity of the risk

curve is still 14.1 so at this stage the curve is not “full”. This means that instead of starting to sell at 150

as a full curve would, the curve is top loaded, and selling will start closer to the end point, at 179.79.

We prepared the simulation workbook XeroLiquid ProtocolSim-WhitepaperExample.ipynb in our

XeroLiquid Protocol Simulator. The chart “XeroLiquid Protocol Simulator example” shows the final

state of the simulation, with y value of 5 in the first row indicating that the sell-RSK position contains 5

RSK, and the p marg value of 179.79 indicating that this starts being sold at a price of 179.79. The

second row shows the linked sell-RSK position, and the last column indicates that those two are indeed

linked.

https://github.com/bancorprotocol/carbon-simulator/blob/main/CarbonSim-WhitepaperExample.ipynb
https://github.com/bancorprotocol/carbon-simulator
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Figure 8: XeroLiquid Protocol Simulator example

3.3 XeroLiquid Protocol deployment strategies and the role of fees

Taking a step back, the XeroLiquid Protocol AMM can be fundamentally used for two different types of

operations:

1. As a fee-earning liquidity provider to the market that is highly capital efficient

due to the nimble deployment features discussed in a section below

2. As a limit or range order machine that allows traders to take a long-term

view in range trading markets, or that assists market makers in making markets,

and that are again greatly improved by the nimble deployment features

discussed below

We have discussed the limit / range order functionality above, and we now briefly discuss fees here.

There are two ways of thinking about fees: the conventional way is that they are a payment rendered for

services provided that are independent of the transaction at hand. This commercial view, however, is not

the full picture: in a trading context, fees are much better understood as a bid-offer spread that increases

the price when a market maker is selling, and decreases it when it is buying. For example, assume

markets are “at 100”, and there are 1% fees. This means that a taker will pay 101 to buy (100 + 1 in fees),

but will only receive 99 when selling (100 - 1 in fees). So fundamentally, fees describe a process where a

liquidity provider buys and sells at different prices, just like any other market maker, and this is how they

make money.

At the moment, XeroLiquid Protocol does not allow for specifying an AMM as a mid-price plus fees.

This has a practical reason: the routing algorithm is more efficient if we do not allow for bidirectional

curves with fees, but we consider it as a future extension.

We note however that in principle it is possible to replicate the mid-curve plus fees paradigm in our

model. In order to do this, the buy and sell curve must be very similar. More precisely, if the mid-curve is

Pa . . . Pb then the buy curve is Pa/(1 + α) . . . Pb/(1 + α) and the sell curve is Pa · (1 + α) . . . Pb · (1 + α)

for a fee level of 2α. Also, the two curves must be seeded with the correct amounts, so that the state of

the two curves is correctly synched. Whether or not a XeroLiquid Protocol UI allows for contributing such

positions is a ques- tion left to the UI designers, but nothing prevents people from interacting directly
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with the contracts to create them.

3.4 XeroLiquid Protocol and MEV

An important issue for AMMs is MEV, the “Miner Extractable Value”, which are prof- its that parties who

control the transaction flow typically miners can extract. An important MEV attack vector for AMMs is the

sandwich attack, where a genuine transaction is sandwiched between transactions of the attacker. An

AMM sandwich attack is very similar to frontrunning in traditional markets, except that a sandwich

attack is guaranteed to either succeed, or to fail costlessly, other than gas. The way it works is as follows:

1. The attacker identifies a reasonably large trade order, eg for buying ETH

againstUSDC; this order is a “market order”, ie it fixes a USDC amount, and

takes whatever amount of ETH it will get

2. The attacker inserts a large order buying ETH against USDC immediately

before the attacked transaction

3. The attacker inserts an equal and opposite (apart from arbitrage gains)

transaction to (2) immediately after the attacked transaction

What happens if the above is executed successfully is that the price at which the

attacked transaction gets filled is artificially high, due to the price impact of the

transaction (2). The transaction (3), which is now selling ETH, benefits from both the

price impact introduced by the transaction (2) and that introduced by the attacked

transaction.

Net/net, the attacker shifted the transaction to a higher price point off-market and can

pocket that difference in price in a risk-free manner.

This particular attack vector is closed in XeroLiquid Protocol, provided the asymmetric

liquidity / two-curve pattern is used with curves that are non-overlapping, or at least far

enough apart: whilst an attacker can still front-run a transaction as described under (2)

above, the reverse transaction (3) will happen on the other curve, and therefore under

vastly different conditions, making this particular attack vector no longer profitable.

3.5 Outlook

One final thing to mention here is that in this paper we restrict the choice of Γ to the

interval [0, 1], ie we allow for constant-price, constant-product, and curves that lie in-

between those two. This is the reasonable choice for a market maker or trader, as for Γ >
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1, collateral moves too far to the borders to be useful. We may investigate whether the

increased convexity in a leveraged case where the collateral that sits too close to zero

and infinity is simply removed – is sensible for some use cases, but at the moment we

do not believe it is. For Γ < 0, the curve becomes inverted, in the sense that when selling

the risk assets, the first units are sold at a higher [sic] price than those that follow, and

when buying them the first units are bought at a lower price, which reverses the order in

an order book.

Whilst this does not make sense from a market-making perspective, there are some use

cases where this can be interesting. Selling the first units more expensively is something

like a “volume discount”, and there may be an economic primitive for which this

becomes interesting, eg for the token distribution use case discussed above.

4 Adjustable bonding curves

We have previously discussed how XeroLiquid Protocol bonding curves are “parametric”,

in the sense that they are hyperbolic curves that are driven by a small number of

parameters. When we first introduced those curves, we described them in terms of the

parameters P0 (a price-like parameter), x0 (a size-like parameter, expressed in the risk

asset), and Γ (a unit-less parameter describing the shape of the curve). We also have the

curve state x (another size-like parameter expressed in the risk asset). We have also

shown that, as expected, we can replace the risk asset denominated parameters x0, x

with the numeraire denominated ones y0, y and the shape of the curve remains the same.

In this discussion, we use the second form because it aligns more closely with the form

that we actually use in the implementation, but of course the essence of the discussion

does not depend on the parameterization of the curve. We remind ourselves of this

second equation below

x = y0 (y (Γ − 1) − y0 (Γ
− 2))

P0 (Γy − y0 (Γ − 1))
(4.1)
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We also remind ourselves that in XeroLiquid Protocol, liquidity is asymmetric. Because

of this, the two tokens in a pool are not equivalent, as the one that is being sold defines

the binding constraint: once the pool runs out of tokens to sell it stops, at least until it

receives fresh tokens from a linked curve. In our convention, this “active” token is on the

y-axis. As discussed in the section on AMM leverage, we use actual, not virtual, token

balances, so the key constraint on the pool is y > 0.

If we ignore the constant-product boundary case (again, the manifold mapping problem),

then we can describe our curves with three financial parameters

• the start of the range, where the AMM starts selling the active token, Pstart; in

our paramerization, this is the slope at the x-intercept, and is expressed with the

active token as numeraire (“dy/dx”)

• the end of the range, where the AMM stops selling, Pend; this is the slope at the

• y-intercept, again expressed with the active token as numeraire

• the capacity of the curve, which determines how much collateral is needed to

move from one end of the range to the other one; this is the y-intercept yint

The state of the AMM is then described by y with 0 ≤ y ≤ yint, which corresponds to the

amount of tokens on-curve. Taken together, these four parameters determine the entire

trading curve of the AMM, and therefore in particular its marginal price. For y = yint the

marginal price is Pmarg = Pstart and for y = 0 it is Pmarg = Pend. We always have

Pstart ≥ Pend which sounds counterintuitive until we understand that those P are

expressed as dy/dx in the numeraire of the active asset, which inverts how we typically

think about an asset that we are trading. If we consider y the risk asset and x the

numeraire for a moment, then prices will be expressed as dx/dy, in which case the price

at which selling starts is below the price at which selling ends, as it should be.

The importance of the marginal price is that if we are not careful here, we may create an

unnecessary arbitrage opportunity for the market. We here assume that there are

reasonably liquid markets elsewhere, so the market price is well established. Without

loss of generality, we assume that that market price, in the reverse units, is currently at

P¯mkt = 100 “dx/dy”. The AMM is selling, therefore showing a price below 100 will

yield an immediate arbitrage opportunity which we need to avoid.
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In terms of starting position we need to consider two cases

1. The AMM is (deep) out-of-the money, ie the current market price is far below (in

dx/dy) the starting price of the range, ie P̄mkt P̄start.

2. The AMM is in (or at, or close to) the money, ie the current market price is above

(or equal to or close to) that starting price of the range, ie P̄mkt ≥ P̄start − ϵ

where ϵ ≥ 0 is some suitably chosen proximity parameter.

In case (1), we have almost full freedom of how we adjust the range: the marginal price

of the AMM is far away from the current market price, so we face little constraint in

adjusting all parameters, including changing the state by adding or removing liquidity. In

case (2) however, we need to be more careful: if ϵ = 0, we are in the range, and we need

to ensure that we keep the marginal price constant P¯marg;2 = P¯marg (if the

AMM is to remain at-the-money) or at least non-decreasing P¯marg;2 ≥ P¯marg .

If ϵ > 0, then we have a little room of maneuver, meaning the marginal price can

decrease up to ϵ, but other than that the same applies.

In practice, what this means is that in case (1), all 4 parameters – or rather, 3 parameters

plus 1 state variable – can be changed independently, whilst in case (2), only 3

parameters can be changed independently if the AMM is meant to remain at the current

marginal price. Therefore in this case, the allowable parameter space is in the 3-

dimensional hyper surface embedded into the 4-dimensional parameter space. In case

the condition is relaxed, and we allow for moving out-of-the money, then the allowable

parameter space is a 4-dimensional half-space, ie it lies in a 4-dimensional space, on

one side of the aforementioned 3-dimensional “constant marginal price” hyper surface.

We have just mentioned that the current state of the AMM, y, is part of this parameter

set that needs to be carefully changed, yet we remind ourselves that strategies with

linked curves do move collateral from one curve to the other which could be an issue.

The way we currently avoid this is that the two linked curves (we do not currently allow

more than two, and they must be on the same pair) must be non-overlapping. In this

case, as long as one of the curves generates collateral to be placed on the other one,

the target curve is forcibly out of the money, and therefore condition (1) applies. If we

allow overlapping curves – or future strategies with more than two curves – however, this

issue requires closer attention. We also want to point out that this is mostly a user
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interface issue: on the smart contract level (and possibly the API) we may well allow for

adjustments that bring the contract into an arbitrageable condition. It is mostly important

that users that make changes via a UI are protected here.

There are too many possible combinations of changes to consider covering them all, so

the important thing to keep in mind that parameters always have to, at least, be changed

in pairs if we are in case (2): we cannot just change one variable, we need to adjust (at

least) one other variable as a response to that. We are going here through one example,

which is looking at how to resize or move a range. For this we define w = Pstart/Pend >

1 (we are back in the dy/dx numeraire) and we rewrite the marginal price equation as

P0 −y
q
1 + y +

yint

q 1 2

w (4.2)
Pmarg = 2 1

int w

We remind ourselves that P0 = √Pstart · Pend corresponds to the location of the range.

We can transform the above equation to
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which is of the functional form P0 = f (w). In other words, if we want to change the width

w of a range (and we want to keep the other parameters untouched) then we have to

change its location P0 and vice versa.

5 Matching, routing, and arbitrage

In this section we briefly deal with matching, routing, and arbitrage. Before we go on,

we need to define those terms. Matching and routing is about finding the best way to

execute a given trade, and in our terminology, matching only looks within a given pool

whilst routing also looks at trades that go through different pools and therefore involve

three or more tokens. Arbitrage is about identifying imbalances in the system, both at the

single pool level, and between pools, so we de facto have the same duality as in routing

here even though we do not semantically acknowledge it.

5.1 Matching and routing

Matching is an exercise particular to XeroLiquid Protocol because in other AMM designs

it is not necessary. Or rather, it is so trivial that it is usually ignored. In order to

understand this statement we need to take a step back and look at the theoretical

foundations of AMMs. To make it somewhat more tangible, let us consider one of the

most dramatic events in the history of AMMs, Sushiswap’s vampire attack on Uniswap.

A key fact is that SushiSwap cloned the Uniswap v2 (constant product) contracts and

established identical pools to those of Uniswap, and then incentivized Uniswap liquidity

to move (that’s the vampire bit).

For the ease of presentation, we assume that Sushi cloned all pools, and that the condi-

tions (most importantly, the fee levels), are exactly the same. We also assume negligible

gas costs, which is a reasonable assumption at least for trades of $100,000 or above. In

this case we have a routing problem (actually, a matching problem in our terminology)

because if we want to trade, we need to decide how much to send through Uniswap and

how much through Sushi. Fortunately, we have intermediaries like 1inch that determine

the optimal path. We see that especially for bigger numbers (ie negligible gas cost),

1inch will show multiple routes for each trade.

1inch deals with a complex real-world problem, but for simplicity we’ll return to our

https://app.1inch.io/%23/1/unified/swap/ETH/DAI
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two identical pools only situation. In this case it is easy to show that the optimal

routing is simply pro-rata to the liquidity in the respective pools. Now we can do a two-

step reasoning with important insights. Step 1 is to understand that, from a trader’s

perspective and ignoring gas, Uniswap and Sushi are not really different entities. They

just form part of a bigger “World AMM”. This yields

Insight 1. All AMMs available on a single network like Ethereum constitute the “World

AMM” for this network (cross network introduces additional complexity because of non-

atomicity).

Here we zoomed out to the big picture, so now we go the other way: if the World AMM

in a world of only Sushi and Uniswap can be broken down into those two exchanges,

surely any single AMM can be broken down further as well. This yields

Insight 2. Any AMM can be considered as an aggregation of constituent AMMs that are

formed by the individual user positions, with a routing (matching) algorithm to route

trades to those constituent AMMs.

In other words, pre-XeroLiquid Protocol, AMMs already have individual user positions.

However,
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those positions are bucketed, rather than personalized, in order to ensure that routing is

pro-rata and therefore trivial. This yields

Insight 3. Pre-XeroLiquid Protocol AMMs have been designed with the intent of mak- ing

routing trivial, thereby impacting the user experience because users are forced into

buckets. XeroLiquid Protocol is designed in a manner that routing is still highly efficient,

despite more personalized user positions.

Here we leave it at that because routing is (a) the center of ongoing research and (b) the

subject of a forthcoming paper. Suffice to say that our routing mechanisms can already

be explored in the XeroLiquid Protocol Simulator that is available under an open-source

license on our Github.

5.2 Arbitrage

Routing is the answer to the question “I want to trade [amount] of [TKN1] to [TKN2].

What is the best way to do it?”. Arbitrage is, in a narrower sense, the answer to the

question “I can trade [amount] of [TKN2] to [TKN1]. If I do the reverse trade somewhere

else, will I make money?”, so clearly those two are intimately related. Arbitrage however

is more complex because it is the original problem “squared”: In order to fully arbitrage

a market we need to look at all possible optimal routes (side 1 of the square) and then

look at all other possible routes (side 2 of the square) to see whether there is money to

be made. Now we are not particularly interested in arbitraging the whole world – well, we

are, but this is hard – so in our current research we focus on two questions:

1. Are there transactions within XeroLiquid Protocol – ie transactions that connect

two or more XeroLiquid Protocol orders – that yield a positive return after fees

and gas?

2. Are there transactions that allow me to arbitrage XeroLiquid Protocol against the

external market?

Again, those are matters of active research and are subject to a forthcoming paper, and

we will also release a simple arbitrage bot in due course. If you are interested in

discussing those topics with us before that, please do not hesitate to get in touch with

any of the authors.

https://github.com/bancorprotocol/carbon-simulator
https://github.com/bancorprotocol/carbon-simulator
https://github.com/bancorprotocol/carbon-simulator


35

6 Conclusion

In this paper, we discussed XeroLiquid Protocol, a next-generation AMM protocol that

pushes the boundaries of what AMMs can do, and that opens a whole new world of

applications, notably in trading and market making. XeroLiquid Protocol’s key design

features are:

• Asymmetric liquidity. Asymmetric liquidity means that each trading direction

is determined by its own curve and state, ie there is one curve for selling, and one

curve for buying. This makes XeroLiquid Protocol particularly suitable for trading

applications,eg for out-of-the-money limit orders as well as for more complex trading

strategies, such as “buy low, sell high” strategies operating in arbitrary user-

defined ranges.

• Adjustable parametric curves (“orders”). The parametric nature of

curves (or orders, as we call them) means every user position is individually

parameter- ized by three parameters (eg starting price, ending price and

capacity) as well as one state variable (tokens held). A curve could be set to

“buy ETH for USDC be- tween 1500 and 1000, with a total budget of USDC

100k”, or the zero-width limit order “sell 10 ETH for USDC at 3,000”. Those

parameters can be adjusted on the fly without closing and recreating the order,

and in a non-arbitrageable man- ner, allowing for an easy and gas-efficient

means of reacting to changes in market conditions.

• Linked curves (“strategies”). Linked curves (or strategies, as we call them)

means that multiple curves share a single collateral pool where collateral acquired

on one curve is available for sale on another one; this allows for the design of

advanced strategies like “buy ETH against USDC at 1000, sell at 2000; start

withUSDC 10k”.

XeroLiquid Protocol orders and strategies can be created permissionlessly by everyone,

for every possible pair of standard ERC20 tokens. This effectively creates a fully

decentralized order book on-chain, against which everyone can trade. Because of the

unidirectional nature of XeroLiquid Protocol trades, they are not susceptible to key MEV

attack vectors. Also there is no Impermanent Loss, in the sense that XeroLiquid Protocol

positions and strategies are not buy-and-hold liquidity positions but the expression of a

particular trading view.
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The XeroLiquid Protocol protocol is enabled and supported by sophisticated matching,

routing, and arbitrage algorithms that will be made open-source in due course.

Especially on the arbitrage side, we also encourage others to privately identify and

execute profitable intra- XeroLiquid Protocol and XeroLiquid Protocol versus the market

arbitrage opportunities, and the authors would be very glad to engage with anyone on

this particular topic, or any XeroLiquid Protocol-related topic for that matter.
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